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Velocity and enthalpy distributions in the compressible 
turbulent boundary layer on a flat plate 

By D. A. SPENCE 
Royal Aircraft Establishment, Farnborought 

(Received 1 November 1959) 

The object of this paper is to present a unified account of the distributions of 
velocity, shear stress and enthalpy in the compressible turbulent boundary layer 
on a flat plate. As a start, the set of velocity profiles measured over a range of 
heat-transfer conditions at Mach numbers between 5 and 8 by Lobb, Winkler & 
Persh (1955) is examined. It is found that by plotting in terms of the Howarth 

variable 7 = (p/p,)dy, the outer parts of the profiles for different Mach 

numbers are brought together on a single curve of the approximate form 
u/u, = (q/A)l/n, A being the transformed boundary-layer thickness. By evalu- 
ating the reference density po and kinematic viscosity vo at the so-called 'inter- 
mediate ' enthalpy (Eckert 1955) the innerparts of the profiles can also be collapsed, 
although less completely, to fit a 'law of the wall' u/u, = A log (7uT/vo - c) + B. 
Here u, = ( ~ ~ / p ~ ) * ,  andA, B and care the sameconstantsasinincompressible flow. 

These properties provide a physical starting point from which the remaining 
features of the mean flow can be calculated. By substitution of appropriate 
stream functions in the equation of motion the distribution of shear stress r in 
inner and outer regions is found; this approximates to the form 

s," 

7/7, = 1 - (U/U,)"+Z 

over the whole layer. A relation between the distributions of enthalpy and shear 
stress is then found from the energy equation, using a turbulent Prandtl number a 
which is assumed constant across the layer to relate eddy conductivity to eddy 
viscosity. The final expression is similar in form to Crocco's integral for the 
laminar boundary layer with a taking the place of the laminar Prandtl number B, 

but contains two extra terms proportional respectively to (a - (T)c/ and (a - B)  cj, 
which represent the effect of the inner viscous regions. 

The enthalpy integral is evaluated using the stated velocity-shear relation, 
and an expression which agrees well with the available experimental data is found 
for the heat-transfer coefficient as a function of recovery factor and skin-friction 
coefficient. It is also found that the usual quadratic enthalpy-velocity relation, 
exact for a = (T = 1, remains an acceptable approximation for Prandtl numbers 
considerably different from unity. 

t At Cornell University, Ithaca, New York, 1959-60. 
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'neroduction 1.1. Howarth's transformation 

A number of recent authors on the compressible turbulent boundary layer have 
noticed that, as in the laminar case, the analysis can be greatly simplified by 
using instead of the physical co-ordinate y the variable 

7 = s," (PlPO) dY (1) 

introduced by Howarth. Here p is the density at  height y above the surface, and 
po an arbitrarily chosen reference density. For the laminar boundary layer on a 
flat plate, if the product pp of density and viscosity is treated as constant, the 
effect of the transformation is to free the velocity profiles of explicit dependence 
on Mach number and Prandtl number. They can be written 

where f is a universal function, u, is the free-stream velocity at  the outer edge 
of the boundary layer, and A is the transformed value of a suitably-defined 
boundary-layer thickness 6. 

It seems natural to ask whether any property like this may also hold for 
velocity profiles in the turbulent case. In  an attempt to answer this question, a 
set of profiles measured by Lobb et al. (1955) is examined in the present paper. 
These were obtained at  Machnumbers between 5 and 8, and momentum-thickness 
Reynolds numbers R, between 5000 and 12,500, with varying amounts of heat 
transfer. When plotted in the form of u/u, against y/6 as in figure 6 the profiles 
are widely different, but the transformation (1) almost eliminates the scatter, so 
that in figure 7 all lie close to a single curve. Except near the inner and outer 
limits, the power law 

with n = 9 provides a good interpolation to the curve, and from experience of 
incompressible boundary layers one would expect the index l /n  to decrease 
slowly with increasing R, over a wider range. 

This particular form of interpolation has of course no special physical signi- 
ficance, but it does make the calculation of the remaining properties of the mean 
flow fairly straightforward. Most recent workers on the incompressible boundary 
layer have preferred to express the outer velocity distribution in terms of the 
'defect' or 'wake' laws elegantly formulated by Clauser (1956) and Coles (1956). 
These laws offer more insight into the physical processes at work in trans- 
ferring turbulent energy through successive eddy scales within the boundary layer, 
but in the zero-pressure gradient case they have little advantage in accuracy 
over the simpler type of law used here. Dimensional analysis shows that the 
incompressible boundary-layer profile on a flat plate can depend on two para- 
meters only; in the outer part one of these must be y/6, and no generality is lost 
in using for the second the index I/n of the interpolating power law, which clearly 
depends on R,. 

1.2. Law of the ud l  

The form of equation (2) is, however, inappropriate in the sublayer and inner 
turbulent core, for we know that in incompressible flow the velocity distribution 

UIUm = f (r/A), (2) 

U/U,  = (r/A)"" (3) 

24 Fluid Meoh. 8 
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in these regions is given by the ‘law of the wall’. That is, the velocity ratio u/u,, 
where u, is the friction velocity (r,/p)*, is a universal function of yu,/v. This 
could only be strictly true if the boundary-layer thickness were infinite, but its 
approximate validity at finite Reynolds numbers is established beyond doubt, 
and one is naturally led to try to generalize the law for compressible flows. 

A way of doing this is suggested by the form of the sublayer profile. If the 
friction velocity is defined for a compressible flow in terms of the reference density 

7, = pou% (4) 
by 

then, since the shear stressp(aul8y) in the sublayer is nearly constant and equal to 
r,, the profile may be written 

Here vo = ,uo/po, and it has been assumed as before that pp is constant. The 
accuracy of this assumption is discussed in $ 7 .  Equation (5) is of the form 

and by analogy with the incompressible case one might expect an expression of 
this form to hold also in the buffer layer and in the turbulent core. To agree with 
the well-known expression for incompressible flow, g would have to approach the 
form A log (qu,/vo) + B in the fully turbulent core, i.e. for qu7/vo > 30 say. If, in 
addition, the physically realistic requirement of a continuous derivative, i.e. of 
continuous viscous shear stress, at  the intersection with the sublayer profile (5) 
is imposed, we are led to the compressible version of an expression derived by 
Squire (1948), namely 

U 
- 

u, 
(7) 

in which A and B have the accepted values 2.5, 5.5, respectively, and c = 5.3. 
With these values the intersection of (5) and ( 7 )  is at qu7/vo = 7.8. 

1.3. Choice of the reference density 

The outer velocity distribution (2) is independent of po, but that defined by (6) 
does depend on the particular reference density which is chosen. A way of de- 
ciding on the appropriate value is suggested by the ‘intermediate enthalpy’ 
method of correlating compressible and incompressible values of the skin fraction. 
It has been found experimentally-for example, by Matting, Chapman, Nyholm 
& Thomas (1959)-that the wall shearing stress 7, a distance x downstream of 
the virtual origin of turbulence in a compressible boundary layer can be written 
+pmu: c f (umx/vm),  where cf is the same function of the Reynolds number as in 
incompressible flow. The suffix m now denotes evaluation of the physical quanti- 
ties at a certain intermediate value hm of the enthalpy, for which Eckert (1955) has 
given the empirical equation 

h, = 0.5(h,+hm)+0.22(h,-hm), (8) 
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where suffixes w, 00 and r refer to wall, free stream and recovery (i.e. zero heat 
transfer) values. 

But the velocity distributions (3) and (7) alone contain enough information 
for the skin friction to be deduced, and it is shown in 3 2 that if the two laws join 
with au/ay continuous, then 

where C ( n )  and D ( n )  have almost exactly the values used in the recognized 
incompressible power-law formulae. The fact that the power-law formulae for 
skin friction can be derived a priori in this way does not seem to be well known: 
most authors have regarded the formulae, at least for the cases n = 9 and n = 11, 
merely as interpolations to more complicated expressions of the Karman-Schoen- 
herr type, which were originally derived by use of a velocity-defect law. But if 
po and po are the values which apply at Eckert’s intermediate enthalpy hm, then 
(9) gives precisely the value of skin friction predicted when his law is used to 
generalize the latter formulae to compressible flow. It follows, therefore, that if 
we set 

the inner law (6) is consistent with the known variation of skin friction with Mach 
number. These reference values are therefore used in the remainder of the paper. 

PO = Pm, PO = Prn, (10) 

1.4. Distributions of shear stress and enthalpy 

Before comparing the velocity laws (3) and (7) directly with the available experi- 
mental profiles, it is useful to calculate the distributions of shear stress and 
enthalpy across the layer on the assumption that they do in fact hold. The shear 
stress is found in 8 3, using the equations of motion in conjunction with appropri- 
ate forms of the steam function in inner and outer regions. General expressions 
involving only the functional forms of the velocity profile are found first, but 
on inserting the precise distributions (3) and (7) an approximate expression is 
obtained for TIT, in terms of u/um alone. This is required in 9 4, where a turbulent 
analogue of Crocco’s integral relating the enthalpy distribution to those of shear 
stress and velocity is derived from the energy equation. 

The derivation calls for some further knowledge of the turbulent transport 
mechanism, in addition to that implied by the distribution of velocity (from 
which those of shear stress and therefore of eddy viscosity followed). For this 
purpose it is assumed, following van Driest (1955) and Rubesin (1953), that the 
ratio of diffusivities of momentum and heat due to the turbulent motion is con- 
stant across the layer. This ratio defines a turbulent Prandtl number a, different 
in general from the laminar value CT which corresponds to molecular transport 
mechanisms. Rubesin and van Driest had recourse to mixing length theories to 
provide the distribution of shear stress, but we can now use the distribution 
obtained directly from the velocity profile. Both this and the distribution of 
enthalpy to which it leads are therefore consistent with the equations of con- 
tinuity, momentum and energy, and with each other. This was not the case with 
those obtained by previous authors. 

24-2 
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1.5. Recovery factor and heat-transfer coeficient 

From the enthalpy distribution, expressions are found in $ 5  for the recovery 
factor (i.e. the fraction of the kinetic energy of the free stream which is recovered 
as enthalpy at  an adiabatic wall) and for the heat-transfer coefficient. In  each, 
the more important term depends only on a, but correction terms proportional 
to (a - (T) (pmcf/pm) and to (a  - (T) (pmcf/pm)*, respectively, appear. The value of 
a cannot be obtained directly from experiments, but it is possible to infer a value 
from that of the recovery factor, which can be measured. The value of a so found 
can then be used to predict the heat-transfer coefficient which corresponds to a 
particular recovery factor. The resulting heat-transfer coefficients lie well within 
the range which would have been expected from experiments. 

Finally, in $6, the experimental velocity profiles referred to are examined to 
show their compatibility with the model of the boundary layer which has been 
elaborated in the paper. 

2. Expression for skin friction 
As remarked in $1.3, an expression for skin friction can be derived directly 

from those for the inner and outer velocity profiles, on the assumption that the 
gradient au/aq is continuous at  their intersection. Using (2), (6) and writing 
T,VL,/~~~ = 5, we should have at  this point 

Eliminating 5 between these two equations clearly yields a relation between 
u,/u, and urA/vo or, what is the same thing, between (u,/u,)2 and u,A/vo. In  
particular, the power law (3) can be rewritten 

say, whence 

Applying the second condition that au/aC is continuous at  the intersection of 
(11) with the logarithmic law ( 7 )  (from which c can be omitted since the join 
occurs at  values of 5 much greater than 5.3)) K is found explicitly as 

K = nA exp [ (B/nA) - I]. (13) 

The values of K for n = 7, 9, 11 are tabulated in table 1, and the corresponding 
outer curves are plotted against 6 in figure 1. The fact that the power and logarith- 
mic laws in each case lie close together for a, fair distance on either side of the 
point of contact shows the joining condition to have been a realistic one. 
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The momentum thickness may be evaluated using the power law (3), since 
integration smooths out errors produced by the departure of the profile from this 
form at the inner and outer edges; we obtain 

(14) 

1.1 K 2nn+ 1) C c‘ Range of R, 
1 

1 

1 

4 0.0124 0.0130 100-5000 
5 0-0087 0.0088 500-50,000 

7 8.82 - 
9 10.57 - 

11 12.36 - 8 0.00645 0.00655 3000-600,000 

TABLE 1. Power laws for incompressible skin friction 

30 

20 

3“ . 
8 

10 

0 

FIGURE 1. Various ‘inner’ velocity laws. 

Replacing A in (12) by this value of 8 yields the first of the expressions (9) for 
skin friction. The second, in terms of a Reynolds number based on x, follows 
i t  by writing the integral momentum equation as 

and setting 0 = 0 when x = 0 after integration. The constants C and D are 
related to K by 

The values of C obtained using K from (13) in this relation are listed in table 1, 
together with values C’ corresponding to the accepted incompressible power-law 
expressions $cr = C ’ R F ~ ’ ( ~ + ~ )  given in the three cases by von K&rm&n (1921), 
Young (1953) and Falkner (1943). The ranges of applicability of the incompres- 
sible laws are those suggested by Culick & Hill (1958). 

d( P m  u m  elPrn)1~(% XIV,) = (u,/um)2 

(n + 1) C*(n+l) = (n + 3) Dhf3)  = n(n + 2)-l K-n. 
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The agreement between the value of C found by the method just described 
and the accepted value C' is close for the i t h  and 4th power-laws, and within 5% 
for the quarter power-law which holds at  the lowest Reynolds number. With 
slightly different values of K (8.85, 10.50, 12.23, respectively) C could be made to 
agree exactly with C'. The corresponding power-law velocity curves would still 
approximate closely to the logarithmic expression over a considerable range of 
R, and might just as well have been chosen in the first place instead of those given 
by (13). 

3. Shear-stress distribution 
The equations of continuity and motion are 

a a 
- (pu)+- ( p v + j V )  = 0, 
ax aY 

a% II au aT 
pu-+(pv+pv 1- = -, 

ax aY aY 

respectively, where primes denote turbulent fluctuations, bars the time means of 
their products, and 

7 = p--pu v 

is the shear stress. In  view of (15) a stream function @ may be defined by writing 

8th I I  

aY 

__ 
pm- alir = pu, -pm- a@ = pv+p I I  v . aY ax 

Different forms for @ are appropriate in the inner and outer regions, which we 
now treat in turn. 

3.1. Inner region 
The stream function may be written 

say. Then 
U 

= - = G ( C )  
U T  

and (treating vm as independent of x, i.e. for a constant temperature wall) the 
momentum equation (16) becomes 

(19) 

where h(x)  = - (d/dx) log (uT/um). This is the compressible flow version of an 
expression found in an earlier paper (Spence 1951). On integration 

aT 
-pu2h(x) = -, 

aY 

Thus with a knowledge of the universal function g in equation (6) and of the 
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variation of rw with x, the shear stress in the inner part of the layer may be found 
from (19). The result of integrating the logarithmic expression (7) can be written 

so that for large enough values of g = u/u,, 

3.2. Outer region 
The velocity law (3) may be written in terms of a stream function 

$" = u * A F ( r / A f  = %fJAF(5)  

f(5) = - = P'(5) 
U 

say. In  this case 
urn 

and the momentum equation can be written 

where A = (prnu2m/rW) (dA/dx)  may be supposed known. P contains a constant of 
integration which should strictly be evaluated by equating this value for ar/ay to 
that given by (20) at the point of contact of the corresponding velocity laws, but 
as in determining B/A, an adequate approximation is found simply by applying 
the outer law across the whole layer. Then by (22) J(0) = 0 since y? must be 
constant on 5 = 0,  and using the power-law velocity distribution we obtain 
J(5) = {n/(n+ l)}fl+l'". Therefore, integrating (23), 

The coefficient of 61+2'n here has been set equal to unity in order to make 7/7, 

vanish at  6 = 1. The coefficient is actually nA/(n+ 1) (n+ 2), which equals 
(prnu2m/7,) (dB/dx)  by (la), so this is a statement of the integral momentum 
equation. 

The expression (24) is not very different from that which would have been 
found by using the inner law in the region where it applies, for logarithmic 
differentiation of (12) shows that 

h(z) = {I/(n + 1 )  A} (dA/dx) ,  

whence (21) may be written 

This is an approximation to (24) if n 9 1. 
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Finally, (24) may be written in terms of velocity alone as 

-=+) 7 n+2 , 
720 

in which form it will be used in the next section to evaluate the enthalpy 
distribution 

4. Enthalpy distribution in terms of velocity and shear stress 
The energy equation may be written 

ah II ah aq au 
pu-+((pv+pv)-  = - + 7 - ,  

ax aY aY aY 

where h is the static enthalpy, and 

is the heat flux per unit area towards the wall. In  forming equation (26) triple 
products such as uf2v' have been excluded as is customary. Regarding h and q 
as functions of u, so that ahlax = (aulax) (dh ldu) ,  etc., and using the equation 
of motion (16), the left-hand side of (26) is seen to equal (&lay) (dhldu) .  After 
dividing through by T(au/ay) the equation may therefore be written 

__ 

ldr  d h  l d q  
7 d u d u  ~ d u  

= - -+l .  

An eddy viscosity E and an eddy conductivity K may now be defined by means of 

The laminar and turbulent Prandtl numbers are then 

fl = ,UQp/k, a = E C p / K ,  

respectively. In terms of these the ratio of the molecular contributions to q and 
7 is, say, 

and similarly that of the turbulent contributions (28) is 

1 d h  
a d u  

qT/TT = --a 

Combining the last two equations, 

and the energy equation (27) becomes 
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So far i t  has not been necessary to make any physical assumptions, and equa- 
tion (29) is exact. To proceed further we may suppose both CT and a are constant 
across the layer. The accepted value of B is about 0-7 for air up to about 1000 OK, 
and a value of about 0.85 for a will be inferred in $5  from the known values of 
recovery factor. 

4.1. Integration of the energy equation 

The fact that the viscous contribution to shear stress falls off very rapidly with 
distance from the wall-in fact exponentially with velocity, decreasing almost 
to zero in a region of the turbulent core where the total stress is still not much 
less thanr,-makes it possible to integrate the last equation in a simple manner. 
After multiplication through by the equation can be written 

where /? = (./a) - 1. In  the region where rL + 0, r may be treated as constant 
and equal to r, on the right-hand side. Then integrating 

and re-arranging, 

The result of integrating (32) with respect to u, treating r again as equal to r, in 
the term involvingrL, may be written, excluding O(Pz), as 

h(u) - h, = 5 p) ( I (  f )  - (a - B )  - UT L(g) K ( f )  - (a - B )  (2) N(g )) , 
B d u  , uc.3 

(33) 

where for convenience f and g have been written for U I U ,  and uIu,, respectively, 
and 

and L(g) = S , ” S d g ,  N(g)  = / g%gdg .  
0 r w  

(35) 

On setting a = B,  we are left in (33) with the well-known Crocco integral for the 
enthalpy distribution in the laminar boundary layer at zero pressure gradient 
(which could also have been obtained at  once from (32)). To evaluate the last 
two integrals we may set rL = r, in the sublayer, and obtain the value of 
rL = p(au/ay)  in the buffer layer by differentiating (7) with pp constant; this 
yields 

7L/TW = 1, exp ( -A) 9-c1 9 
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according as u/u, = g 2 el ( = 7-8). Then for g > el, 
L = L,+A, N = N ~ - % A ( ~ + A ) ,  (36) 

7, 7, 

Except in the innermost part of the turbulent core we may set rL/r, = 0 and 
simply use the latter values. Values fairly close to these can also be obtained from 
other recognized interpolations for the buffer-layer profile; for instance, Rannie 
(1956) has suggested the formula 

where Lo = el + A = 10.3, N o  = +Li + $A2 = 56.2. 

U 
- = ( 1 1 4 4  tanh (54d 
a, 

with 1/4K1 = 14.53, for incompressible flow in the region 0 < c< 27.8. The cor- 
responding value of 7L/7, is 1 - K ~ ( U / U , ) ~ ,  and by integrating up to the point 
where this vanishes we find Lo = 9.7, N o  = 52.8. (The less accurate assumption 
of an abrupt laminar-turbulent interface without a buffer layer at  the point 
where 5 = Alogc+B, i.e. at  g = 11.7, gives Lo = 11.7, No = 68.5.) 

4.2. Recovery factor and heat-transfer coeficient 

Since it gives the enthalpy at  the outer edge of the boundary-layer equation (32) 
provides expressions for the recovery factor, i.e. the fraction of the kinetic energy 
of the external stream which is recovered as enthalpy at  an insulated wall-and 
for the heat-transfer coefficient. With u = u,, and introducing the skin-friction 
coefficient cf = p,u~/+p,u2,, (32) becomes 

h,-h, = - - I ( l ) - (a -v)Lo K ( l ) - ( a - @ N o - -  . (it), i pacfl Pm2 
(37) 

In  the case of zero heat transfer (dhldu), = 0, and h, equals the recovery en- 
thalpy h,. The recovery factor is therefore 

The inward heat flux at the wall per unit area when h, + h, is 

Elimination of h, from (37) and (38) shows that the first term on the right-hand 
side of (37) is equal to h,-h,. This value may be used to calculate the Stanton 
number, defined by 

1/Xt = Pmuao(hr-hw)/qw = ( 2 / c j ) I ( l ) -  (2Pm/PmCfP (a-g)Lo* (39) 

For a = 1 we should have I(1)  = 1, and the right-hand side of (39) reduces for 
incompressible flow to the form 2 /c f  - (2/cf)* $(g) found by Rannie (1956). If 
also g = 1 the equation becomes simply St r= $cf,  which expresses the Reynolds 
analogy between heat and momentum transfer. In  the general case, a Reynolds 
analogy factor may be defined by the ratio St/&, as calculated from (39). 
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5. Evaluation of the enthalpy distribution 
The distribution of shear stress in terms of velocity as given by ( 2 5 )  may now be 

used to evaluate the functions I(f), K ( f )  which occur in the enthalpy-velocity 
relationship (33). Writing f for u/u,, ( 2 5 )  is 

717, = 1 - fp, 

1.2 

0 8  

04 

0 

f f 
FIGURE 2. I(f) and 2 K ( f )  for several values of a ( p  = 11). 

where p = n+ 2,  and I and K ,  from (34), are 

I(f> = aSu/(l-fP)"-'dfl, 

These functions have been computed forp = 9, 11 and a = 06(0.1)1-5. I(f) is an 
incomplete beta function, but the standard tables do not cover the required 
range of a and p ;  the functions were therefore found by quadrature after writing 

(1 -f)l-Il-al = 1 - = i(z), [(l -f) (1 -fp)]ll-"l = ii (2 ) -  

Then for a < 1 

I(f) = J-;i(zl) dZl ,  K ( f )  = y ( f i i ( z l )  dz1J2' k(x,)dx,, 
0 0 

and for a > 1 
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A check is provided by the fact that 
I(1) = a! ($/(a+;- 1 l)! f 

which can be found from tables. 
1.5 

I .4 

1.3 

1.2 

1.1 

1 4 

0 9  

0.8 

0 7  

0-6 

0 5  

1 1 

a 
FIGURE 3. The values of I(1) for p = 9, 11, 13, and 2K(1)/1(1) for p = 11. 

Figure 2 shows the results for a = 0.6-1.4 and p = 11 (i.e. for the Qth power 
velocity profile). The broken lines representing a .  andf2K( 1) lie close in all cases 
to the curves of I(f) and K( f ) ,  respectively, and it follows that within the limits 
imposed by ignoring the terms involving cf in (33), the enthalpy variation across 
the boundary layer can be well approximated by a quadratic in velocity, i.e. by 

(41) 
U 

h(u) = h, + (h, - h,) - - gru2 
urn 

over the range of Prandtl numbers (or recovery factors) covered by the computa- 
tion. 
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Figure 3 shows the variation with a of I (  1). The curves forp = 9 and p = 11 lie 
very close together. A curve of 2K(1)/1(1) is also shown; in this case the results 
for p = 9 and p = 11 were indistinguishable. The variation of 2K( 1)/1( 1) is fairly 
slow, and its value can be read sufficiently accurately at non-tabular values of a 

I 4  

1 3  

0" 
2- I ?  
eN 

1 1  

1 0  

h 0.9 

0 8  

I I I I 

P& 
/Im 

1.6.; 10' 
1.7x 106 

5 3 x  10' 

1.6 x 10' 

2 . l x  lo> 

a 

FIGURE 4. Variation of Reynolds analogy factor St&+ and recovery factor r with 
a for several values of ( u , / u ~ ) ~  (a = 0.7). 

1 30 

1.20 

100 

0.90 
0.91 

0001 0-002 0.003 

T 

os8o.s9 
0.90 

0.91 

0001 0-002 0.003 

( U,/Um )2 

FIGURE 5. Variation of Reynolds analogy factor with (u, /u,)~ for fixed values of 
recovery factor. 

to permit accurate evaluation of K ( l ) ,  using the exact expression (40) for I(1) 
at such values. A fairly wide range of Reynolds numbers is probably covered by 
the casep = 11 ; the values of I (  1) and K (  1) for this case have therefore been used 
to express the recovery and Reynolds analogy factors as functions of a for a 
number of values of ( U , / U ~ ) ~  (i.e. effectively of boundary layer Reynolds number 
pmu, t?/,um) in figure 4. 
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As was stated in Q 1.5, values of a! cannot be found directly from experiment. 
We do know, however, that for air at  Mach numbers up to 8 the recovery factor r 
lies somewhere between 0.88 and 0.91. The curves of figure 4 have therefore been 
cross-plotted in figure 5 for constant values of r in this range, to show the variation 
of the Reynolds analogy factor with ( U , / U ~ ) ~ .  The actual magnitude of the factor 
St/& and its decrease when cr decreases, i.e. when pmum 6/pm increases, are in 
good agreement with those found experimentally, which have been reviewed by 
Seiff (1954). The values of a! in the cross-plot are in the range 0.85-0.9. 

6. Experimental velocity profiles 
6.1. Outer law 

Figure 6 shows a set of profiles of u/u, against y/6 measured by Lobb et al. (1955) 
at Mach numbers between 4.93 and 8.18 and stagnation temperatures near 
300 OK. The M = 8 profiles lie near a Bth power law, and those for M = 5 near a +th 
power law. The effect of the Howarth transformation is illustrated in figure 7 by 
plotting the profiles with y/A as the ordinate. This was found in terms of y/6 by 
writing 

Y = joq (h/hm) (42) 

and using the quadratic enthalpy-velocity relationship (41) with u/u, = (y/A)l’n. 
Integrating and inserting 6 from (14), the relation 

The experimental values of y/B, u/u, and a, b, c (with n = 9) were used in (43). 
As plotted in figure 7 the profiles have collapsed almost entirely to a single curve 
lying close to the 8th power law. This justifies the use that was made of the law 
in simplifying the integration with regard to y. 

To avoid overcrowding the figure, only five of the profiles measured by Lobb 
et al. are shown. The same collapse to a single curve was, however, obtained with 
the remaining nine profiles as well. 

6.2. Law of the wall 

The inner parts of the same set of velocity profiles are plotted in the form of 
u/u, against yu,/v, in figure 8, which also contains data from tests at  the R.A.E. 
by Monaghan & Cooke (1953). The calculation of y from y by means of (42) is a 
little more complicated in this case, since it is necessary to take account of the 
dependence of the enthalpy distribution in the sublayer and buffer layer on 
T ~ / T , ,  as represented in (33) and (36). The details need not be given here. 

The friction velocity was found from the experimental values of pcoumO/,um, 
using the Bth power-law formula for skin fraction in the form given by (9). The 
intermediate enthalpy was found from the wall and free-stream values, using 
Eckert’s formula (8) and assuming a recovery factor r = 0.89. 
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FIGURE 6. N.O.L. velocity profiles in physical co-ordinates. Key: 
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El 5.06 0.420 X 8.18 0.495 
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FIGURE 7. N.O.L. velocity profles in transformed co-ordinates. Symbols as 
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The values of (u,/uo,)2 so found agreed well with those published for the R.A.E. 
data, but with the N.O.L. data there were systematic discrepancies of up to 25 yo 
in the cases with heat transfer. The values of ct measured by the N.O.L. decrease 
with wall cooling, which is the opposite tendency to that predicted by the inter- 
mediate enthalpy theory. The measured values were obtained (a )  from the 
measured heat-transfer rates, assuming the Reynolds analogy factor to be 1.2, 
and (b)  from the slopes of the velocity profiles in the sublayer. Neither method is 
very reliable, and the theoretical values of skin friction corresponding to the 
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FIGURE 8. Inner behaviour of experimental velocity profiles. -, 2.5 log (vu7/vm) + 5.5. 
R A E .  data 13.4 station: a, with heat transfer; A, zero heat t rwfer .  Other symbols aa 
for figures 6 and 7. 

observed local Reynolds numbers were preferred in the present analysis to those 
quoted by Lobb et al., since the bulk of other experimental work tends to support 
the intermediate enthalpy formula. The collapse to a single profile shown in 
figure 8 would not have been as complete if u, had been based on the quoted values 
of cf, although the curves would still lie closer together than when plotted with 
y ,  vW and a wall-friction velocity uTw = (rw/pw)4 in place of 7, urn and uT, as in their 
paper. 

There is a small but systematic discrepancy between the data from the two 
sources as plottedin figure 8, the N.O.L. points all lying a little above the standard 
curve u/u, = 2.5 log (quT/vrn) + 5.5 and the R.A.E. points somewhat below. This is 
almost certainly due in part to residual Mach number effects not removed by the 
transformation, the presence of which would be likely to show since Monaghan 
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& Cooke worked at  about M = 2 and Lobb et al. at hypersonic speeds. The dis- 
crepancy may also reflect the fact that even to-day there is no general agreement 
among experimental workers on the precise values of the constants A ,  3 in the 
logarithmic law (see, for example, Table 1.1 of the forthcoming volume I n c m -  
pressible Aerodynamics edited by Thwaites, in which a number of sets of values 
from the literature are listed). The values A = 2.5, B = 5.5 used in this paper are 
probably the best known. The reason for this measure of disagreement may lie 
in the fact that some dependence on a Reynolds number such as u, S/vm should 
strictly be included in the inner law; but in part no doubt it also arises from the 
difficulty of measuring skin friction accurately. 

In  a recent note Yasuhara (1959) has attempted a correlation of some experi- 
mental profiles in terms of a defect law of the form (u,-u)/u, as a function of 
r/A. The fact that this was not very successful may also have been due to un- 
certainty about the skin friction. 

7. Concluding remarks 
From the evidence of figures 6 and 7 there seems little doubt that the method 

of collapsing the outer four-fifths or so of the velocity profiles as a function of r /A 
is valid, and this justifies a posteriori the calculations of the shear stress and 
enthalpy distributions in $93 and 4. Other investigators have remarked on the 
fact that the index n in the approximating power law (y/S)lln decreases with 
Mach number-as shown in figure 6-but this change in n is conveniently re- 
moved by the present transformation. This result, and the further fact that the 
enthalpy-velocity relation is approximately quadratic, can be used empirically 
to treat more complicated boundary-layer flows as well: for instance, the relation 
between the compressible and incompressible values H and Hi, say, of the form 
parameter S*/8, is found from (2) and (41) to be 

H = (h,/h,) Hi + (hr/hm) - 1, (44) 

and this equation has been used (Spence 1960) to calculate the growth of the 
boundary layer in a pressure gradient by an extension of the methods available 
for incompressible flow. 

The uncertainty about the skin friction in the N.O.L. tests make the validity 
of the inner law (7) less certain than that of the outer law. One can certainly draw 
the more limited conclusion that if u, is defined from the value of r, predicted by 
equation (9), irrespective of whether this is correct, then u/u, is somewhere near 
the standard logarithmic functionof qu,/v, given by (7).  Thison its own, however, 
is not a very tidy result, for if p,u: so defined were not in fact equal to the wall 
shearing stress, the profile in the sublayer could not be written u/u, = 'z/u,/v, as in 
equation (5), and the reasoning leading to the functional form u/u, = g(yu,/v,) 
in the logarithmic region would no longer apply. 

It was also assumed in deriving this expression that the density-viscosity law 
could be approximated for constant pressure by p,u = constant, i.e. excluding 
effects of dissociation by p cc T. This might at  first sight seem to rule out hyper- 
sonic flows at  the extreme stagnation enthalpies typical of re-entry. But the 
relation can always be taken in this form over a suitably restricted range of 
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temperatures, and as table 2 shows, the width of the range over which a single 
constant of proportionality could be used becomes surprisingly wide at high 
temperatures. The table is constructed from the results for dry air calculated by 
Hirschfelder et al .  (1955).  The assumption is clearly satisfactory for the tem- 
peratures between 100 and 300 OK covered by both sets of data analysed, and 

T ( O K )  100 200 300 500 1000 2000 3000 5000 
,UJT x 107 7.02 6.68 6.17 5.36 4.26 3.34 2.90 2.41 
(g/cm sec O K )  

TABLE 2 

should work moderately well, at least across the sublayer, to which the viscous 
effects are mainly confined even for wall temperature as high as 1000 OK. Since 
the viscosity enters the expression for skin friction only to a small power, this 
will not be greatly in error. But the use of the intermediate enthalpy formula 
would of course be highly speculative at  such temperatures, and departures from 
the inner law might well become more marked. On the other hand, there is no 
particular reason to expect the outer law to break down at higher temperatures, 
since it does not depend on viscosity; but the conclusions drawn from it regarding 
the enthalpy distribution might be slightly modified by the variation of specific 
heat and Prandtl number. 
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